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The nonbear BGK model-a derivation and two applications 

S SIMONS 
Queen Mary College, Mile End Road, London El,  UK 

MS received 6 March 1972, in revised form 29 June 1972 

Abstract. Employing a single well defined approximation, a derivation is given of the 
nonlinear BGK model. The model is applied to the formulation of equations governing the 
temporal and spatial variation of macroscopic parameters in the regime where changes in 
these parameters within a mean free path cannot be neglected. Using the model, an extension 
is given of earlier results concerning the sign of successive time derivatives of the entropy. 

1. Derivation of the nonlinear BGK model 

The rate of change due to intermolecular collisions of the distribution function f ( u )  for 
a system of gas molecules can be expressed in the form 

where P(u, U,, u2, u3) is a known function of the velocities and f, = f ( u , )  (n = 1,2,3).  
The well known BGK model (see, for example, Cercignani 1969) replaces the correct 
form (1) by the model operator 

ym = v (F(u) - f (u ) )  ( 2 )  
a t  c 

where v is a collision frequency and F(u) is a Maxwell equilibrium distribution, given by 

m 312 
F = n ( 2 )  2nk T enp( -=(U- q 2 )  (3) 

The latter contains five parameters gP (= n, T, V ,  , V2, V,) corresponding to the five 
quantities y p  (number, energy and three components of momentum) conserved in 
collisions and the values of these parameters are then determined by the equations 

vyp(F -f) du = 0 (1 < p < 5 )  (4) 

which correspond to the requirement that the model operator should conserve overall 
the five y p  which are conserved by the true operator df/dt), . 

When all f are close to an equilibrium distribution the connection between the 
corresponding linearized forms for dflat), and df/dt)r has been clarified by Cercignani 
(1966). However, for the nonlinear forms it would appear that this has not yet been done. 
In particular an explicit form for v as a function of v and the state of the gas has not been 
given and generally Y has been treated as an ad hoc parameter. It is the purpose of the 
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present section to remedy this, and this we shall do by making use of a single well defined 
approximation. 

We begin by noting that in expression (1) an integration is performed over thc 
variables U,, U,, u3 on which f ,  , f i , f 3  depend and it is therefore reasonable to replace 
each of the f , ,  f i ,  f3 (as distinct from f )  by some average form involving parameters 
which can then be chosen to satisfy the condition 

which is satisfied by the true collision operator. We choose for this average f o r m  
equilibrium distributions F ,  , F 2 ,  F3 involving undetermined parameters og and note 
that the number of such parameters is equal to the number of equations (5). This gives 

Now since F is an equilibrium distribution, it is known that 

P(F2F3 - F F , )  du, du, du, = 0 171 

and hence on eliminating F2F3 between equations (6) and (7) we obtain equation (2) with 

v = 1 P F ,  du, du, do3 

It is clear from this that v will depend on U (since P does) and also on all the up since 
F ,  involves them; the precise dependence on these variables is given by equation (8). 
The detailed evaluation of v is considered by Cercignani (1969) for the cases of hard- 
sphere molecules and power-law intermolecular potentials with angular cut-off. In all 
these cases v depends on r,  except for the case of Maxwell molecules where v turns out 
to be constant. For hard-sphere molecules the variation of v with U for 1: in the region 
of i; is also quite slow, since v only changes by a factor of about two as c varies between 
0.25 C and 2 6. 

The values of the up are now obtained from equation (4), but the explicit dependence 
of v on the op now makes the application of this equation more complicated. If the f‘ 
are all close to an equilibrium distribution it is readily shown that the above analysis 
reduces to that of Cercignani (1966) for the linearized case with the values of op to be 
used with v corresponding to those of the equilibrium distribution. However, in general 
the values of op will not equal those of an equilibrium distribution with the same total 
y p  as the given nonequilibrium distribution, since this latter condition would correspond 
to 

which in general differs from equation (4). The two equations are only identical if v is 
independent of U. 
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2. Application of the BGK model to general spatial and temporal variations of the macro- 
scopic parameters ap 

We proceed to derive in this section general partial differential equations governing 
the spatial and temporal variation of the parameters ap when the collision operator is 
represented by the BGK model (2) with v given by equation (8). Our approach will lead 
to the familiar Navier-Stokes equations in the first approximation and corrections to 
them in higher approximations. 

We begin by considering the general Boltzmann equation for the system which 
takes the form 

3) at = f + , . V f  at 

where f f(u, r,  t).  On using the model (2) equation (10) becomes 

( l+ tL)f  = F (11) 

where t = v-l and L 3 @ / & ) + U .  V. Subject to convergence criteria we may expand 
(1 + tL)- as a power series in zL to yield the solution of equation (1 1) as 

f = (1- tL+tLtL- . . .)F (12) 

where it must be borne in mind that z and L do not in general commute since t involves 
the op which are themselves dependent on r and t .  We now apply the condition (4) to 
the solution (12) and this yields 

which on substituting for F from equation (3), gives the basic set of five partial differential 
equations governing the op.  It is clear that the ratio of successive terms in this expansion 
is of the order of AF/F where A F  is the change in F in a mean free path or a relaxation 
time and thus if AF/F is not too large, a sufficiently accurate result may be obtained by 
curtailing the series (13) after the required number of terms. 

Before developing equation (13) further, we must emphasize that in general, as 
discussed in 5 1, the values of the op given by the solution of equations (13) will not be 
the physical values of these parameters as would be given, for example, by measuring 
the temperature (or other parameter) at a point. The physical value (in which we are 
principally interested) o; is obtained by equating the total value of y p  for the given 
nonequilibrium distribution f to that of an equilibrium distribution with parameter 
values at. This corresponds to 

s Yd;(o:, * * .)dU = .J rpf  dv 

= IyJ(o1,. ..)du- /ypzLF(ol ,... )do+ . . . (1 < p < 5 )  (14) 

on using the solution (12). This gives a set of five equations in each of which a certain 
function of the ot (as obtained by integrating the left hand side of equation (14)) is 
equated to specific functions of the tsp. Thus if equations (12) together with appropriate 
boundary conditions have been solved for the 6, as a function of r and t, equations (14) 
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may then be used to obtain the corresponding of. We may note that if z is independent 
of U it follows from equation (13) that, apart from the first term, the right hand side of 
equation (14) is zero, and therefore of = 0,. This is in agreement with the point made 
in 9 1 that the op correspond to the 'physical value' of the parameter only if T is independ- 
ent of U. 

We now return to equation (13) whose first term is readily shown to be equivalent 
to the Navier-Stokes equations, bearing in mind that in this approximation of -= G,, 

as only the first term of equation (14) is significant. 
Considering now the first two terms on the left hand side of equation (13), it is readily 

shown that this equation takes the form 

and if z can be taken as independent of the (T,, then the term inside the large braces in 
equation (15) is zero. On substituting for F from equation (3), together with the five 
forms for y,, equation (15) will yield a set of five second order differential equations for 
the 0,. The relation between 0: and crp is given by equation (14) and retaining the 
first two terms on the right hand side gives 

(16) s p ( O T , .  . . , a:) = s p ( O , ,  . . . , 0s)- Tp(O, ,  . . . , Gs) (1 d p d 5 )  

where 

S ,  = ( ;I,F da 
J 

and 

Thus a:(v, t )  can be found if a,(u, t )  is known. Equations (15) and (16) are the analogue 
in the present treatment of the Burnett equations in the conventional approach. 
Equation (15) simplifies if z is independent of 0, as all terms involving z can then be 
taken outside the relevant integrals and if, in addition z is independent of the o,, 
equations (1 5) become 
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with 0: = op.  The derivation of this equation and equation (15) shows them to be valid 
when the proportional effect of the terms after the first two terms is small. This suggests 
that an iterative technique could be employed for the solution : we first solve equation (15) 
retaining only the first two terms and then substitute this solution for op into the 
neglected terms in order to obtain second and subsequent iterates of op .  

Finally we consider the situation when the parameters op depart by only a small 
amount from a spatially and temporally constant value 0;; this corresponds to the 
linearized problem where the distribution function is always close to a constant 
equilibrium distribution. We therefore let 

(19) 

with lob1 << lo,”/, and in terms B(o,,  . . . , 0 5 )  occurring in integrands of equation (15), 
we put 

op = o,” + 0; 

Equations (15) then become 

where 

Letting of = o,”+pp,  it readily follows from equations (16) and (17) that: 

where 

and substituting from equation (22) into (21) gives the following second order equation 
for p p :  

As mentioned earlier, p = of if z is independent of U. Again, as in the nonlinear case, 
an iterative approach to the solution with given boundary conditions is indicated. 
Finally we may make the point that in many linearized problem the equilibrium value 
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U’ = 0. This means that dF/dT) ,  and aF/an), will be even functions of u while dF/c?u,), 
will be odd. This in turn implies that many of the integrals appearing in equations (21b) 
and (22b) will be zero. 

3. Application to entropy production 

It is known that the approach to equilibrium for an isolated system is characterized by 
the time variation of the entropy being such that 

ds/dt 2 0. (24) 
It has been pointed out previously (Simons 1969, 1971a, 1971b) that for certain systems 
the result (24) may be generalized to the form 

(25) 
for 1 < n < N where in some cases N is finite and in others N = x. These earlier 
discussions were, however, restricted to systems in which the physical quantities varied 
by only a small amount from local equilibrium values, and it is therefore clearly of 
interest to examine whether the inequality (25) is true for any systems in which large 
variations in these quantities can occur. In the present section we employ the BGK 
model to discuss the case of a spatially homogeneous gas relaxing to equilibrium with 
arbitrary initial values of the distribution function f ( u ,  t). For simplicity we shall deal 
with the case of Maxwell molecules where, as mentioned in 0 1, v is independent of ti, 

and proceed to show that inequality (25) holds for 1 < n < 10. 

( -  1)” d”s/dt” < 0 

We begin with the general expression 

s = - k  f l n f d u  I 
for the entropy density of the gas, and differentiating with respect to time we obtain 

af 
dt ds s at 
- =  - k  ( l + l n  f)-du. 

Now if F is a Maxwell equilibrium distribution, In F is a linear combination of the five 
quantities y p  conserved in collisions, and so 

I -1nFdu  df = 0 = i g d u  
at 

from which equation (27) may be expressed in the form 

e dt = k i g l n ( 5 )  du. 

Substituting for df/& from the model operator (2) ,  it follows that : 

dt 

where 

U = (F/f)- 1. 
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In order to differentiate equation (29) repeatedly we first note that, as pointed out at 
the end of 0 1, the relevant op for both F and v will equal those of an equilibrium distribu- 
tion with the same total y p  as the given nonequilibrium distribution, since v is assumed 
independent of U. Since this total y p  is unaltered throughout the evolution of the system 
with time, it follows that op and hence F and v will be independent of the time. Now, 
it is readily seen from equation (2) and (30) that 

_ -  dU Z(f4 - 
- - v u ( u + l )  and -- -vfu 

(?t 2t 

and it therefore follows from equation (29) that : 

- = -kv2  d2s 
dt2 

fu{ln(u+ l ) + u }  dv. s 
Further differentiation of this equation, combined with induction, readily leads to the 
result that 

s d"S 
- = (-1)n-lkv" fu{ln(u+l)+H,(u))du 
dt" (33) 

where H,(u) is a polynomial in U of degree n - 1 given by the recurrence relation 

H, + 1 ( ~ )  = U + H,(u) + u(u + 1) dH,(u)/du (34) 

with H,(u )  = 0. Now, since f and F are both positive it follows from equation (30) 
that - 1 Q U < x, and the required result (25) will therefore hold for those values of n 
for which the integrand z in equation (33) is positive for the above range of values of U. 
We consider separately the ranges 0 ,< U Q CCI and - 1 d U Q 0. To deal with the former 
range, we note that H,(u) is a polynomial with all coefficients positive (by induction 
from relation (34)) and hence for positive U, z is positive for all n. For the latter range, 
that is, -- 1 Q U 6 0, it is clear that z will be positive if the function 

(35) 

is negative. To examine the range of values of n for which this holds, the polynomials 
H,(u) were generated on a computer for values of n = 1,2, .  . . and the corresponding 
values of J,(u) were computed at intervals of 0.01 for the range 0 2 U 2 -0.99. As a 
result it was found that throughout this range J,(u) remains negative for 1 < n 6 10 
but becomes positive over part of the range for n = 11. We therefore conclude that 
equation (25) holds for the system with 1 d n 6 10. This means that S - S ,  and its 
first nine derivatives tend monotonically to zero as t -+ CO. Although this result has 
only been proved here for Maxwell molecules where v is constant, it may be possible to 
generalize it, at least for some range of n, to other intermolecular potentials such as 
hard-sphere molecules where, as mentioned in 0 1, the variation of v with U can be quite 
slow. 

J,(u) = In( 1 + U) + H,(u) 
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